
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 28. September 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 2 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 5th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 2.1 Bounding an inductive sequence (1 point).

Consider a sequence of natural numbers (a(n))n∈N0 that is de�ned by

a(0) = 1, a(1) = 2, a(n) = 2a(n− 1) + 3a(n− 2) for n ≥ 2.

In this exercise, we will show that this sequence grows exponentially fast.

a) Use induction to show that for all n ≥ 4, we have a(n) ≥ en.

Solution:

Our induction hypothesis for n ∈ N is that a(n) ≥ en and a(n− 1) ≥ en−1. In order to get a base
case, we need to compute some of the �rst values of the sequence a(n). We have

a(0) = 1, a(1) = 2, a(2) = 7, a(3) = 20, a(4) = 61, a(5) = 182.

In particular, a(4) ≥ e4 ≈ 54.6 and a(5) ≥ e5 ≈ 148.4, so the induction hypothesis holds for the
base cases n = 4 and n = 5.

Now let n > 5 and suppose that the induction hypothesis holds for n− 1, i.e. that a(n− 1) ≥ en−1

and a(n− 2) ≥ en−2. �en we can compute

a(n) = 2a(n− 1) + 3a(n− 2) ≥ 2en−1 + 3en−2
3≥e
≥ 2en−1 + en−1 = 3en−1

3≥e
≥ en.

�is shows that our induction hypothesis holds for all n ≥ 5. Remembering what the induction
hypothesis is, this proves that a(n) ≥ en for all n ≥ 4.

b) Show that for all n ≥ 0, a(n) ≤ O(3n).

Solution:

We will prove by induction that a(n) ≤ 3n for all n ∈ N, which implies in particular that a(n) ≤
O(3n).

Similarly to part a, our induction hypothesis for n ∈ N is a(n) ≤ 3n and a(n− 1) ≤ 3n−1. �e base
case n = 1 is satis�ed since a(0) = 1 ≤ 30 and a(1) = 2 ≤ 31. Let n > 1 and assume by induction
that a(n− 1) ≤ 3n−1 and a(n− 2) ≤ 3n−2. �en we have

a(n) = 2a(n− 1) + 3a(n− 2) ≤ 2 · 3n−1 + 3 · 3n−2 = 2 · 3n−1 + 3n−1 = 3 · 3n−1 = 3n.

�is concludes the induction proof that a(n) ≤ 3n for all n ∈ N.

c) Suppose that we rede�ne the starting values of the sequence, i.e. that for some b, b′ ∈ N, (a(n))n∈N
is given by

a(0) = b, a(1) = b′, a(n) = 2a(n− 1) + 3a(n− 2) for n ≥ 2.

Show that for any choices of b, b′ ∈ N we still have a(n) ≤ O(3n) for all n ≥ 0.

Solution:

Let b, b′ ∈ N be any natural numbers. De�ne C := max{b, b′3 }. We will show by induction that for
all n ∈ N, we have a(n) ≤ C · 3n. Our induction hypothesis for n ∈ N is that a(n) ≤ C · 3n and
a(n− 1) ≤ C · 3n−1.

We have a(0) = b ≤ C = C · 30 and a(1) = b′ ≤ 3C = C · 31, so the base case holds. Let n > 1
and assume by induction that a(n− 1) ≤ C · 3n−1 and a(n− 2) ≤ C · 3n−2. Similarly as in part b,
we have

a(n) = 2a(n− 1) + 3a(n− 2) ≤ 2C · 3n−1 + 3C · 3n−2 = C(2 · 3n−1 + 3 · 3n−2) = C · 3n.

�us, we have foundC > 0 such that a(n) ≤ C ·3n for all n ∈ N, which shows that a(n) ≤ O(3n).

Exercise 2.2 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈ N, ef-
�ciently. For this exercise, we will treat multiplication of two integers as a single elementary operation,
i.e., for a, b ∈ Z you can compute a · b using one operation.

a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

Solution:

Algorithm 1 An(a)

x← An/2(a)

return x · x

b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

Solution:

2

Algorithm 2 Power(a, n)
if n = 1 then

return a
else

x← Power(a, n/2)
return x · x

c) Determine the number of elementary operations (i.e., integer multiplications) required by your algo-
rithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost anything.
�is includes handling of counters, computing n/2 from n, etc.

Solution: LetT (n) be the number of elementary operations that the algorithm frompart b) performs
on input a, n. �en

T (n) ≤ T (n/2) + 1 ≤ T (n/4) + 2 ≤ T (n/8) + 3 ≤ . . . ≤ T (1) + log2 n− 1 ≤ O(log n) .

d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.

• Base Case.
Let k = 0. �en n = 1 and Power(a, n) = a = a1.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is, Power(a, 2k) = a2

k .

• Inductive Step.
We must show that the property holds for k + 1.

Power(a, 2k+1) = Power(a, 2k) · Power(a, 2k) I.H.
= a2

k · a2k = a2
k+1

.

By the principle of mathematical induction, this is true for any integer k ≥ 0 and n = 2k.
∗e) Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power

of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists a k ∈ N such that
n = 2k + 1.

Solution:

Algorithm 3 Power(a, n)
if n = 1 then

return a
else

if n is odd then
x← Power(a, (n− 1)/2)
return x · x · a

else
x← Power(a, n/2)
return x · x

3

∗f) Prove correctness of your algorithm in e) and determine the number of elementary operations in
O-Notation. As before, you may assume that bookkeeping operations don’t cost anything.

Solution: Let’s prove correctness.

• Base Case.
Let n = 1. �en Power(a, n) = a = a1.

• Induction Hypothesis.
Assume that the property holds for all positive integersm < n. �at is, Power(a,m) = am.

• Inductive Step.
We must show that the property holds for n. If n is even,

Power(a, n) = Power(a, n/2) · Power(a, n/2) I.H.
= an/2 · an/2 = an.

If n is odd,

Power(a, n) = a · Power(a, (n− 1)/2) · Power(a, (n− 1)/2)
I.H.
= a · a(n−1)/2 · a(n−1)/2 = an.

By the principle of mathematical induction, this is true for any integer n ≥ 1.

Let T (n) be the number of elementary operations that the algorithm Power performs on input a, n.
Let’s prove by induction that T (n) ≤ 2 log2 n.

• Base Case.
Let n = 1. �en T (n) = 0 ≤ 2 log2 n.

• Induction Hypothesis.
Assume that the property holds for all positive integersm < n. �at is, T (m) ≤ 2 log2m.

• Inductive Step.
We must show that the property holds for n. If n is even,

T (n) ≤ T (n/2) + 1
I.H.
≤ 2 log2 n/2 + 1 < 2 log2 n.

If n is odd,

T (n) ≤ T ((n− 1)/2) + 2
I.H.
≤ 2 log2(n− 1)/2 + 2 < 2 log2 n.

By the principle of mathematical induction, this is true for any integer n ≥ 1.

Exercise 2.3 O-Notation.
Remark. In the following solutions, we prove the statements using the de�nition of O-Notation. It is
also perfectly �ne to do it di�erently, for example using �eorem 1 from exercise sheet 0.

a) Write the following in the asymptotic O-notation. Your answer should be simpli�ed as much as
possible. Unless otherwise stated, we assumeN = N = {1, 2, 3, . . . }. You do not need to check that
the involved functions take values in R+.

1) 5n3 + 40n2 + 100.
Solution: 40n2 ≤ 40n3, 100 ≤ 100n3, hence 5n3 + 40n2 + 100 ≤ 145n3 for all n ≥ 1, so
5n3 + 40n2 + 100 = O(n3)

4

2) 2n log3 n
4 with N = {2, 3, 4, . . .}.

Solution: O(n log n)

We must show that for some positive C , and for all n > 1,

2n log3 n
4 ≤ Cn lnn.

�is follows from a direct calculation. We use the formula for base change, logb n = loga n
loga b , and

obtain
2n log3 n

4 = 8n log3 n = 8n
lnn

ln 3
=

8

ln 3
n lnn,

so the condition holds with C := 8/ ln 3.

b) Prove that if f1(x), f2(x) ≤ O(g(x)), then f1(x) + f2(x) ≤ O(g(x)).

Solution: Since both f1 and f2 are O(g(x)), we know that for some n0, for all x ≥ n0, there exist
positive real numbers C1, C2 that:

f1(x) ≤ C1g(x)

and
f2(x) ≤ C2g(x).

�en f1(x) + f2(x) ≤ C1g(x) + C2g(x) = (C1 + C2)g(x)�us, if we set C3 := C1 + C2 then for
all x ≥ n0,

f1(x) + f2(x) ≤ C3g(x).

�us we have shown that f1(x) + f2(x) ≤ O(g(x)).

c) Let f1(x), f2(x), g(x) > 0. Prove or disprove the following.

1) If f1(x), f2(x) ≤ O(g(x)) then f1(x)
f2(x)

≤ O(1).

Solution: We will disprove this. Let f1(x) = x, f2(x) =
√
x, and g(x) = x. x ≤ O(x),

√
x ≤

O(x), but f1(x)
f2(x)

=
√
x � O(1).

2) If f1(x) ≤ O(g(x)) and f2(x) ≤ O(1
g(x)), then f1(x)f2(x) ≤ O(1).

Solution: Because f1(x) ≤ O(g(x)), there exists C1 such that f1(x) ≤ C1g(x) for all x ≥ 1.

Because f2(x) ≤ O(1
g(x)), there exists C2 such that f2(x) ≤ C2

1
g(x) for all x ≥ 1.

Assume x ≥ 1. �en
f1(x)f2(x) ≤ (C1g(x))

(
C2

1

g(x)

)
= C1C2

�us:
∃C3 > 0.∀x ≥ 1, f1(x)f2(x) ≤ C3 ∗ 1

In this case C3 = C1C2. From this we have shown that. f1(x)f2(x) ≤ O(1).

Exercise 2.4 Towers of Hanoi (2 points).

In this exercise you should design a recursive divide-and-conquer algorithm for solving the Tower of
Hanoi puzzle. �e puzzle consists of three rods A,B and C , and n disks of di�erent sizes, which we
number from 1 (smallest) to n (largest). �e disks can slide onto any rod. �e puzzle starts with all the
disks stacked in ascending order (largest on bo�om, smallest on top) on rod A (see Figure 1).

5

Figure 1: Initial state of the Tower of Hanoi game for n = 4.

Now, the goal is to move all the disks to rod C . When moving the disks the following rules must be
obeyed:

1. Only one disk can be moved at a time.

2. Each move consists of taking the uppermost disk from one of the stacks and placing it on top of
another stack or an empty rod.

3. No larger disk may be placed on a smaller disk.

a) Develop an algorithm that solves the problem for n = 1.

Solution: If there is only one disk we can just move the disk from rod A to rod C .

b) Assume that you have an algorithm Move(source, target, spare) that can move n − 1 disks
from a source rod to a target rod using a spare rod and use it to solve the puzzle with n disks.

Solution:

Algorithm 4 SolveHanoiWithHelper(source, target, spare, n)

Move(source, spare, target)

Move the remaining disk from source to target.
Move(spare, target, source)

c) Make use of the insights you gained in a) and b) in order to complete the pseudo-code of SolveHanoi.
Calling SolveHanoi(A, C , B, n) should solve the puzzle.

Solution:

Algorithm 5 SolveHanoi(source, target, spare, n)

if n > 0 then
SolveHanoi(source, spare, target, n− 1)
Move the uppermost disk from source to target.
SolveHanoi(spare, target, source, n− 1)

d) Proof the correctness of SolveHanoi(A, C , B, n) for all n ∈ N by induction.

Solution:

Base Case: For n = 1 the algorithm calls SolveHanoi(source, spare, target, 0), which
does nothing because the last argument is 0. Next, the disk is moved from source to target.
Finally, SolveHanoi(spare, target, source, 0) is called, which does nothing because
the last argument is 0. �us, the disk is at the target rod and the algorithm solved the problem.

6

Induction Hypothesis: SolveHanoi(source, target, spare, k) correctlymoves k disks from
the source rod to the target rod using the spare rod for some k ∈ N.

Induction Step k → k + 1: SolveHanoi(source, spare, target, k + 1) calls
SolveHanoi(source, spare, target, k), which according to the induction hypothesis
moves k disks from the source rod to the spare rod using the target rod as auxiliary rod.
�en, the last disk is moved from source to target. Finally, SolveHanoi(spare, target,

source, k) is called, which according to the induction hypothesis moves k disks from the
spare rod to the target rod using the source rod as auxiliary rod. �us, all the k + 1 disks are
on the target rod and the algorithm solved the problem.

e) How many moves are performed by SolveHanoi(A, C , B, n) in order to solve the puzzle? Hint:
Let Tn denote the number of moves required by SolveHanoi(A, C , B, n) and Tn−1 the number of
moves required by SolveHanoi(∗, ∗, ∗, n− 1) (where ∗ is a placeholder). �ink about how Tn and
Tn−1 relate to each other. �e relationship between Tn and Tn−1 is called a recurrence relation.

Solution:�e recurrence relation for SolveHanoi is given by Tn = 2Tn−1+1 and T1 = 1. Expan-
ding it yields

Tn = 2Tn−1 + 1

= 2(2Tn−2 + 1) + 1 = 4Tn−2 + 3

= 4(2Tn−3 + 1) + 3 = 8Tn−3 + 7

= 8(2Tn−4 + 1) + 7 = 16Tn−4 + 15

...

We see an emerging pa�ern of the form

Tn = 2kTn−k + 2k − 1. (1)

Plugging k = n− 1 in (1) and using the fact that T1 = 1, we would get

Tn = 2n−1T1 + 2n−1 − 1 = 2n − 1. (2)

Now let’s actually prove (2) by induction on n. �e base case n = 1 holds since 21 − 1 = 1 = T1.
Suppose that (2) holds for some n ≥ 1 and let’s show it holds for n+1 as well. Using the recurrence
relation and the induction hypothesis, we have

Tn+1 = 2Tn + 1 = 2 · (2n − 1) + 1 = 2n+1 − 1,

which concludes the inductiove proof of (2).

7

